Speakage (Speech-to-Image)

TEAM #5

Affan Bin Usman

High-Resolution Image Synthesis with Latent Diffusion Model

ausman4@asu.edu

Avnish Singh

asing330@asu.edu

Sidhant Das

denoisin

sdas116@asu.edu

Vihari Gandrakota

tent Space

noising U-Net Co

vgandrak@asu.edu

switch

skip connection concat

Problem Statement

- Traditional GAN techniques may run into "mode-collapse" during image generation
- We use diffusion based models to "generate an image from speech"
- Used transfer learning to train diffusion model on our custom dataset

Algorithms & Approaches

- Model Pre Trained Latent Diffusion Model from Stable Diffusion
- Training data Custom data set containing 30 images of Affan resized to 256x256x3 preserving aspect ratio
- Training hyperparameters:
 - Learning rate: 1.0e-06
 - Training Steps: 2000
 - Batch Size: 1
 - Optimizer: Adam

$$\mathbb{E}_{\mathbf{x},\mathbf{c},\boldsymbol{\epsilon},t} \left[w_t \| \hat{\mathbf{x}}_{\theta}(\alpha_t \mathbf{x} + \sigma_t \boldsymbol{\epsilon}, \mathbf{c}) - \mathbf{x} \|_2^2 \right]$$

Loss function (Perception Loss)

Algorithms & Approaches

Approach:

- This method takes a few images of a subject (Affan) and the corresponding class name (Person), and returns a fine-tuned/"personalized" text-to-image model that encodes a unique identifier that refers to the subject.
- Fine tuning the low-resolution text-to-image model with the input images by applying a class-specific prior to preservation loss
- Inference with a text prompt containing a unique identifier and the name of the class the subject belongs (Eg: Affan Person)

Implementation

Step 1: System Requirements
 RTX 3090 GPU
 24 GB RAM

3 Ø requirements	
 erequirements prequirements pomegaconf pinops pytorch-lightning==1.6.5 test-tube ransformers egit+https://github.com/CompVis/taming-transformers e git+https://github.com/CompVis/taming-transformers e git+https://github.com/openai/CLIP.git@main#egg=c setuptools==59.5.0 pilow==9.0.1 torchmetrics==0.6.0 e. protobul==3.20.1 gdown 	s.git
protoput==3.20.1 gdown -qq diffusers["training"]==0.3.0 transformers ftfy -qa "inywidgets>=7 -8"	
huggingface_hub pywidgets==7.7.1 captionizer==1.0.1	

<u>Step 2</u>: Install dependencies
 <u>Requirements.txt</u>

- **<u>Step 3</u>**: Obtain an open source weight file
 - Pre trained weights

Implementation

- <u>Step 4</u>: Data preparation
 - Custom dataset
 - Token = Custom name (Affan)
 - Class = Person
- <u>Step 5</u>: Download token images
 - Custom (Affan's) pictures

۲	Running DDIM	Sampling with 50 t:	imesteps	
	DDTM Sampler:			0/50 [00:00<7, 7it/s]
	DDIM Sampler:	2%	1/5	00:00<00:06. 7.87it/s]
	DDIM Sampler:	4%	2/5	00:00<00:05, 8.05it/sl
	DDTM Sampler:	6%	3/5	00:00<00:05, 8,12it/sl
	DDTM Sampler:	8%1	4/5	00:00<00:05, 8.16it/sl
	DDIM Sampler:	10%	5/5	00:00<00:05. 8.18it/sl
	DDTM Sampler:	12%	6/5	[00:00<00:05, 8.19it/s]
	DDIM Sampler:	14%	7/5	0 [00:00<00:05. 8.19it/s]
	DDIM Sampler:	16%	8/5	00:00<00:05. 8.20it/s]
	DDIM Sampler:	18%	9/5	0 [00:01<00:05. 8.19it/s]
	DDIM Sampler:	20%	10/5	00:01<00:04. 8.19it/s]
	DDIM Sampler:	22%	11/5	00:01<00:04. 8.20it/s]
	DDIM Sampler:	24%	12/5	0 [00:01<00:04. 8.19it/s]
	DDIM Sampler:	26%	13/5	0 [00:01<00:04. 8.20it/s]
	DDIM Sampler:	28%	14/5	0 [00:01<00:04, 8.20it/s]
	DDIM Sampler:	30%	15/5	0 [00:01<00:04, 8.21it/s]
	DDIM Sampler:	32%	16/5	0 [00:01<00:04. 8.21it/s]
	DDIM Sampler:	34%	17/5	0 [00:02<00:04, 8.20it/s]
	DDIM Sampler:	36%	18/5	0 [00:02<00:03, 8.20it/s]
	DDIM Sampler:	38%	19/5	0 [00:02<00:03. 8.19it/s]
	DDIM Sampler:	40%	20/5	0 [00:02<00:03, 8.19it/s]
	DDIM Sampler:	42%	21/5	0 [00:02<00:03, 8.19it/s]
	DDIM Sampler:	44%	22/5	0 [00:02<00:03, 8.19it/s]
	DDIM Sampler:	46%	23/5	0 [00:02<00:03, 8.19it/s]
	DDIM Sampler:	48%	24/5	00:02<00:03, 8.20it/s]
	DDIM Sampler:	50%	25/5	ð [00:03<00:03, 8.20it/s]
	DDIM Sampler:	52%	26/5	ð [00:03<00:02, 8.20it/s]
	DDIM Sampler:	54%	27/5	0 [00:03<00:02, 8.19it/s]
	DDIM Sampler:	56%	28/5	ð [00:03<00:02, 8.20it/s]
	DDIM Sampler:	58%	29/5	ð [00:03<00:02, 8.19it/s]
	DDIM Sampler:	60%	30/5	0 [00:03<00:02, 8.19it/s]
	DDIM Sampler:	62%	31/5	ð [00:03<00:02, 8.18it/s]
	DDIM Sampler:	64%	32/5	ð [00:03<00:02, 8.18it/s]
	DDIM Sampler:	66%	33/5	ð [00:04<00:02, 8.19it/s]
	DDIM Sampler:	68%	34/5	0 [00:04<00:01, 8.20it/s]
	DDIM Sampler:	: 70%	35/5	ð [00:04<00:01, 8.20it/s]
	DDIM Sampler:	72%	36/5	0 [00:04<00:01, 8.20it/s]
	DDIM Sampler:	74%	37/5	0 [00:04<00:01, 8.21it/s]
	DDIM Sampler:	76%	38/5	ð [00:04<00:01, 8.20it/s]
	DDIM Sampler:	: 78%	39/5	0 [00:04<00:01, 8.20it/s]
	DDIM Sampler:	80%	40/5	0 [00:04<00:01, 8.19it/s]
	DDIM Sampler:	82%	41/5	0 [00:05<00:01, 8.18it/s]
	DDIM Sampler:	84%	42/5	0 [00:05<00:00, 8.18it/s]
	DDIM Sampler	86%	43/5	1 00.05-00.00 8.18it/cl

- <u>Step 6</u>: Download class dataset
 Person ddim
- Step 7: Run training
 - Obtain <u>new weights</u> file
- **<u>Step 8</u>**: Prompt for new image generation

Results

"Affan person as a masterpiece portrait painting by John Singer Sargent in the style of Rembrandt"

"Affan person eating a pizza painting by John Singer Sargent in the style of Rembrandt"

"Affan person eating chocolate icecream hyperrealistic"

"Affan riding a motor bike on a highway hyper realistic"

"Affan skydiving from a plane"

Results

Training loss after 2000 steps is 0.03

Training the model for higher number of steps will saturate the loss at a value closer to zero.

The process took 46 minutes for 2000 steps

Applications

- Photography and painting Inspiration
- Computer Aided Design
- Fortnite emotes

Demonstration

- The following video demonstrates the whole process of generating an image from a speech prompt
 - Uses new weights
 - Generates image incorporating custom dataset

Video - <u>click here</u>

Questions?

THANK YOU!

