
Planning & control of a 4 -DOF

manipulator using inverse

kinematics

Names Affan Bin Usman Vishnu T. P Vihari Gandrakota Sidhant Das

Asurite ID ausman4 vpishara vgandrak sdas116

PROBLEM STATEMENT

● Considering a 4-DOF manipulator with all the 4 joints as revolute and

assuming certain DH parameters for the manipulator, we want the

manipulator to navigate from an initial pose to a desired final pose.

Initial

pose

Final

pose
Trajectory

PROCESS FLOW

RRT*

Interpolation

Working schematics

Controller

Proportional Integral Controller

න 𝑲𝒊

+

DEMO

Results

● The end effector of the manipulator was

able to reach the desired pose following

the desired trajectory.

● Some initial deviation from trajectory is

observed but after certain time the

controller is able to make the

manipulator follow the desired

trajectory.

● Some steady state error does exist

since its just a proportional controller

Code Description

The following functions have been defined and implemented in our code:

● rrt_star_plan_obs

Plans the path from the start point to the goal coordinates.

● forward_kinematics

Finds the transformation matrix from base frame to end effector frame.

● analytical_jacobian_val

gives the analytical jacobian if the input joint positions are inputted.

● workspaceforproj

Plots the workspace of the manipulator

● ellipse_plot

To find and plot the velocity ellipsoid in 3D.

● Controller Parameters

Proportional gain=30 & Integral gain=0.05

Steps for Execution
Software Used: MATLAB

MATLAB Packages To Be Installed

• RRT and RRT* for 3D --- https://www.mathworks.com/matlabcentral/fileexchange/105615-rrt-and-rrt-for-3d

• 2D/3D RRT* algorithm --- https://www.mathworks.com/matlabcentral/fileexchange/60993-2d-3d-rrt-algorithm

• Curve Fitting Toolbox version 3.6 by MathWorks

• Statistics and Machine Learning Toolbox version 12.2 by MathWorks

• Robotic Toolbox for MATLAB version 10.4 by PETER CORKE

The above files can be added using MATLAB add on manager either directly through the manager or going to the above link

and installing it

to the MATLAB add on manager.

If the files are downloaded using the link not on MATLAB but somewhere in system, they must be first saved in the execution

folder.

Steps To Run The Code:

• run file named finalcode.m (type finalcode in the MATLAB command window after making sure the file is added to the path)

• Provide the inputs as indicated.

Discussion

● Challenges of implementing inverse-kinematics from scratch.

● Drawbacks of existing controllers.

● How these drawbacks can be overcome through other approaches.

● How this work can be extended to arms with multiple joints and higher DOF.

● The Kinematic model can be incorporated with a dynamic controller, in an adaptive manner.

● Algorithms like particle swarm optimization can be used to compute inverse kinematics

without using analytical Jacobian.

Team Contributions

Team Member Name Contribution
Contribution

Percentage

Affan Bin Usman
Velocity ellipsoid, App designer - GUI Design, Trying implementation of

OpenMANIPULATOR-X on Ubuntu (18.04) ROS (melodic), Workspace,

Code integration

25%

Vishnu T. P
RRT, Trajectory planning, PI Controller, Presentation, Inverse

Kinematic algorithms, Code integration
25%

Vihari Gandrakota
Research on different inverse kinematic algorithms, Analytical Jacobian,

Trying implementation of OpenMANIPULATOR-X on Ubuntu (18.04)

ROS (melodic), Presentation, Code integration

25%

Sidhant Das
Transformation matrix calculation, Computation of DH parameters, N-

DOF robot making interactive code, Presentation, Workspace, Code

integration

25%

Our team met on a weekly basis to discuss theory behind our project & the execution of the code to that theory. Each member of the team has had

full attendance & participation within each of these project meetings.

Thank You!

